Evolution of Veterinary Vaccines – An Industry Perspective on Consistency

September 2015
Introduction

• The world of veterinary vaccines has changed significantly over the years:
Introduction

• Industry’s approach to veterinary vaccine development has evolved significantly in concert with this change.

• This “evolution” has been driven by a number of factors:
 – Globalization of disease risks and needed responses.
 – Better understanding of disease control needs/objectives.
 – Better diagnostic capabilities and understanding of incidence.
 – Greater clarity regarding pathogenesis/virulence factors.
 – Higher customer expectations for vaccine efficacy and safety.
 – Recognition of “benefit/risk” approach to vaccine approval.
 – Evolving global regulatory environment and increasing Authority expectations.
Introduction

• Veterinary vaccine manufacturing, testing, and quality assurance has also evolved during this timeframe.
• This evolution has been driven by a different set of factors:
 – Need to better industrialize processes to meet global needs.
 – Need to adapt processes to meet economic/regulatory realities.
 – Need to better understand processes to define “control points”.
 – Need to qualify processes to demonstrate quality/consistency.
 – Need to test final products to confirm proper production.
 – Need to review the batch “package” to confirm “release-ability”.
 – Need to monitor product performance in the field to reconfirm benefit/risk and “fine tune” product information.
Gaining a Balance Between Development and Manufacturing

Development Drivers
- Pursue unmet medical needs.
- Allow product differentiation.
- Justify favourable “benefit-risk”.
- Develop with “speed to market” approach.
- Provide range of solutions to meet individual customer needs.

Manufacturing Drivers
- Rugged processes.
- Compatible technologies/assets.
- Predictable processes/costs.
- Process scale-up/yield improvements.
- Easily introduce new technology.
- Flexible process definitions.
Applications of Consistency

• Consistency Principles most-often linked with:
 – Reduction in use of animals for product testing/release.
 – Efforts to improve batch consistency and avoid scrap.

• To be truly transforming, we need to use the consistency approach also drive and reward vaccine evolution/revolution:
 – Improve batch-related root-cause investigations/resolutions.
 – Support continuous improvement initiatives/approvals.
 – Facilitate starting material assessments and replacements.
 – Adjust/optimise antigen production parameters.
 – Confirm proper finished product assembly/blending.

• Share two examples where in-process understanding and consistency concepts offers multiple benefits.
Applications of Consistency

• Adjustment of Antigen Production Parameters:
 – Better control over antigen production is critical to control product performance in terms of quality, efficacy, safety.
 – Improved technology and analytical methods take some of the “mystery” out of antigen manufacturing.
 – Proper process monitoring and data analysis help establish process understanding and support efficient change management:
 • Improved control of cell growth and “target antigen” expression.
 • Improved control over “chemical” processes such as inactivation reactions, conjugation reactions, etc.
Applications of Consistency

• Example - Conjugation Kinetics/Endpoints:
 – Conjugation reactions use reactions that are stoichiometric in nature, but are influenced by a number of inter-related factors:
 • Batch-to-batch variability of carrier and hapten molecules.
 • Molar excesses of key chemicals used in conjugation reaction.
 • Reaction conditions used during process (temperature, pH, etc.)
 – Variability in conjugation efficiency raises questions regarding “potency” and often drives development of immunological methods for product release.
 – Proper process control and data collection allows a manufacturer to fine-tune process using control points within the “potent” range and transition away from variable conjugates (and animal testing).
Applications of Consistency

Conjugation Kinetics/Endpoints:
– Understanding the Chemistry:

Carrier + Hapten → Conjugate
Applications of Consistency

Conjugation Kinetics/Endpoints:
– Understanding the Impact on Immunogenicity:

![Graph showing the effect of conjugation efficiency on immunogenicity. The x-axis represents conjugation efficiency, and the y-axis represents Log2 GMT (U/ml). The graph includes lines for alternate animal potency, batch potency - target animal, and target animal threshold.](image-url)
Applications of Consistency

Conjugation Kinetics/Endpoints:
– Understanding the Process:

<table>
<thead>
<tr>
<th>Conjugate Batch Number</th>
<th>Conjugation Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.2</td>
</tr>
<tr>
<td>2</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td>7.2</td>
</tr>
<tr>
<td>4</td>
<td>6.6</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
</tr>
<tr>
<td>6</td>
<td>8.2</td>
</tr>
<tr>
<td>7</td>
<td>7.0</td>
</tr>
<tr>
<td>8</td>
<td>8.2</td>
</tr>
<tr>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>10</td>
<td>7.5</td>
</tr>
<tr>
<td>11</td>
<td>8.9</td>
</tr>
<tr>
<td>12</td>
<td>7.8</td>
</tr>
<tr>
<td>13</td>
<td>8.4</td>
</tr>
<tr>
<td>14</td>
<td>7.5</td>
</tr>
<tr>
<td>15</td>
<td>7.8</td>
</tr>
<tr>
<td>16</td>
<td>8.5</td>
</tr>
<tr>
<td>17</td>
<td>8.3</td>
</tr>
<tr>
<td>18</td>
<td>9.1</td>
</tr>
<tr>
<td>19</td>
<td>8.4</td>
</tr>
<tr>
<td>20</td>
<td>8.4</td>
</tr>
<tr>
<td>21</td>
<td>7.5</td>
</tr>
<tr>
<td>22</td>
<td>7.3</td>
</tr>
<tr>
<td>Average (n=22)</td>
<td>7.9</td>
</tr>
</tbody>
</table>
Applications of Consistency

Conjugation Kinetics/Endpoints:

– Understanding the Impact on Batch Release:

– Range then allows further process improvements over time and justifies more-timely variation assessment and approval.
Applications of Consistency

• Finished Product Formulation Process:
 – Better control over component addition/blending is critical to product performance in terms of quality, efficacy, safety.
 – Especially important for newer “complex” formulations:
 • Products containing closely-related organisms (e.g. HPS serovars, IBV strains, etc.).
 • Products containing multiple, interacting adjuvant components.
 – Process monitoring and data analysis help support batch release without need to routinely test complex final product:
 • Reduces the complexity of final product analytical method development.
 • Reduces the complexity of final product specifications and release.
Applications of Consistency

• Example – Final Formulation Blending:
 – Influenced by a number of inter-related factors:
 – Nature of formulation and energy input needs.
 – Mechanical issues (i.e. capabilities/capacity of equipment).
 – Formulation issues (i.e. blend-ability of components).
 – Conditions used during process (temperature, pH, etc.)
 – Variability in blending efficiency raises questions regarding proper assembly and can drive development of immunological methods for product release.
 – Proper process understanding and demonstration of “consistency” allow a manufacturer to fine-tune process, demonstrate control points within the “proper” range and transition away from variable formulations and excessive finished product testing.
Applications of Consistency

Blending Endpoints:
– Understanding the Assembly/Blending Process:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Addition and dissolution of Component A in WFI</td>
</tr>
<tr>
<td>2</td>
<td>Mixing for x minutes to ensure complete dissolution</td>
</tr>
<tr>
<td>3</td>
<td>pH adjustment from y to z</td>
</tr>
<tr>
<td>4</td>
<td>Mixing for x minutes after pH adjustment</td>
</tr>
<tr>
<td>5</td>
<td>Dilution with antigen and WFI up to final volume</td>
</tr>
<tr>
<td>6</td>
<td>Mixing for x minutes to ensure homogeneity</td>
</tr>
</tbody>
</table>
Applications of Consistency

Blending Endpoints:
– Understanding the impact:

Formulation Profile Over Time
Applications of Consistency

Blending Endpoints:

– Understanding the Impact on Batch Release:

– Demonstration of consistent formulation using in-process tools removes long-term need for finished product testing.
Conclusion

• There have been many key advances in the veterinary vaccine quality movement:
 – Use of “designed for purpose” facilities and equipment (GMP).
 – Implementation of master seed/master cell stock principles.
 – Qualification of starting material quality/purity/consistency.
 – Control of organism growth (and “active ingredient” expression).
 – Understand antigen input (versus “titer before inactivation”).
 – Improved batch blending, processing, and filling.
 – Increased demand on test development and validation.
 – Recognition of animal test drawbacks:
 • Animal welfare concerns.
 • Test reliability and impact on product performance.
• We must continue to evolve to meet the demands of the globe.
Conclusions

• Driving “consistency” philosophy (from an industry perspective):
 – Ensure commercial batches are comparable to clinical materials demonstrated as safe and effective.
 – Allow development programs to focus on “areas of technical risk”.
 – Improve availability of process analytical tools that offer the ability to design consistent processes versus “test into compliance”.
 – Utilise GMP trend analyses and post-marketing surveillance as additional tools to “fine-tune process/product information.
 – Ensure lessons learned from one development program extend to subsequent programs (and reduce development burden).
“Nothing endures but change”
QUESTIONS?